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1. NOTATIONS AND DEFINITIONS

Let E, F be two normed linear spaces with norms & &E , & &F , respec-
tively, and let G be a nonempty abstract set with a commutative operation
``+'' such that if s, t # G then s+t # G. We assume that (G, 7, +) is a
measure space with a _-finite, complete measure +. Let +? be the comple-
tion of the product measure +_+ in G_G defined on the completion of the
product _-algebra, denoted by 7? .

We shall say that the product measure +? is absolutely continuous with
respect to + if for every set A # 7 such that +(A)=0 there holds +?(A&1)
=0 where A&1=[(x, y) # G_G : x+ y # A]. We shall denote by L0(G, E)
(resp. L0(G, F )), the space of all strongly 7-measurable vector-valued func-
tions f : G � E (resp. g: G � F ) with equality +-almost everywhere. We shall
write also L0(G)=L0(G, R). L1(G, E) (resp. L1(G, F )) will mean the space
of Bochner integrable functions f # L0(G, E) (resp. L0(G, F )) with respect
to the measure +. Let A # L(E, F ); i.e., A is a linear continuous operator
from E to F.

We shall say that K: G_E � F is a kernel function with respect to A if
Au=0 implies K(t, u)=0 for all t # G, u # E and K( } , u) # L1(G, F ) for all
u # E. Let L: G � R+

0 =[0, +�[, L # L1(G)=L1(G, R); in the following
we assume D=�G L(t) d+(t)>0 and we put p(t)=L(t) D&1. Let �: G_R+

0

� R+
0 satisfy the following conditions: �( } , x) is 7-measurable for all

x�0; �(t, } ) is continuous and nondecreasing, �(t, 0)=0, �(t, x)>0, for
x>0, �(t, x) � +� as x � +�, for all t # G. If additionally �(t, } ) is con-
cave for all t # G we say that � is concave. A kernel function K will be called
(L, �)0 -Lipschitz if there holds the inequality &K(t, u)&F�L(t) �(t, &u&E),
for all t # G, u # E. K will be called (L, �)-Lipschitz if there holds the
inequality

&K(t, u)&K(t, v)&F�L(t) �(t, &u&v&E),

for all t # G, u, v # E (for these notions see [1, 2, 10, 11]).
We define an operator T by the formula

(Tf )(s)=|
G

K(t, f (s+t)) d+(t)

for all functions f # L0(G, E) such that the above Bochner integral exists for
+��a.e. s # G, and Tf # L0(G, F ). The set of all such functions f will be
denoted by Dom T and called the domain of the operator T.

Let ', \ be two modulars on L0(G, E), L0(G, F ), respectively, and let \~
be a modular on L0(G). We suppose that \( f )=\~ (& f &F), for f # L0(G, F ).
We recall here that a modular on a real vector space X is a functional
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#: X � [0, +�] such that #(x)=0 if and only if x=0; #(x)=#(&x), for
every x # X; #(ax+by)�#(x)+#( y), for every x, y # X, and a, b # R+

0 ,
a+b=1. We note that the last property implies that for any modular # we
have #(ax)�#(bx), for every x # X, and a, b # R+ , with a�b.

The modular space generated in L0(G, E) by ' will be denoted by
L0

'(G, E), being

L0
'(G, E)=[ f # L0(G, E) : lim

* � 0
'(*f )=0];

analogously by L0
\(G, F ) we will denote the modular space generated in

L0(G, F ) by \, (see [9]). The modular \~ is called J-convex if for every two
measurable functions p: G � R+

0 , with �G p(t) d+(t)=1 and !: G_G � R,
the inequality

\~ \|G
p(t) |!(t, } )| d+(t)+�|

G
p(t) \~ ( |!(t, } )| ) d+(t)

holds (see [2]).
The modular \~ is called quasimonotone if there is a constant M�1 such

that if f1 , f2 # L0(G) with | f1|�| f2 |, then \~ ( f1)�M\~ (Mf2).
The modular ' is called {-subbounded if there exist constants c1 , c2�1,

and h0�0 such that

'( f (t+ } ))�c1 '(c2 f )+h0

for all f # L0(G, F).
We call [\~ , �, '] a properly directed triple if there is a set G0 /G,

G0 # 7, +(G"G0)=0 such that for every * # ]0, 1[ there exists a C* # ]0, 1[
satisfying the inequality

\~ [C*�(t, &!( } )&E)]�'[*!( } )],

for all t # G0 and ! # L0(G, E). This implies the inequality

\~ [C*�(t, &!t( } )&E)]�'[*!t( } )]

for all t # G0 and any family (!t( } ))t # G of functions !t # L0(G, E) (see [1, 2]).

2. AN ESTIMATE FOR THE ERROR OF APPROXIMATION

We are going to estimate \(a(Tf &A b f )), for f # Dom T, a>0, by
means of '. We shall need the notion of '-modulus continuity |' of a function
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f # L0(G, E). Let U be a nonempty family of sets U # 7, U{<. Then |' :
L0(G, E)_U � R� +

0 =[0, +�] is defined by the formula

|'( f, U)=sup
t # U

'( f (t+ } )& f ( } ))

(see [3, 8]). There holds the following:

Theorem 1. Let ', \ be modulars on L0(G, E), L0(G, F ), respectively,
and let \~ be quasimonotone with a constant M�1 and J-convex modular on
L0(G). Moreover, let \ be of the form \( f )=\~ (& f &F) and let {-subbounded
with constants c1 , c2�1, h0�0. Let [\~ , �, '] be a properly directed triple
and let K be an (L, �)-Lipschitz kernel function. Then for every f # Dom T,
U # U, * # ]0, 1[, and a # ]0, C*(2DM)&1[, there holds the inequality

\(a(Tf &A b f ))�M|'(*f, U)+M[2c1 '(2*c2 f ( } ))+h0]

_|
G"U

p(t) d+(t)+M\~ (2aMr0 &A b f &F), (1)

where D=�G L(t) d+(t), p(t)=L(t) D&1, and

r0= sup
u # E, Au{0

1
&Au&F "|G

K(t, u) d+(t)&Au"F
.

Proof. Obviously we can assume that f # L0
'(G, E), otherwise the right-

hand side of (1) would be infinite. By the properties of the modular \ we
have, for any a>0,

\[a(Tf &A b f )]�\ _2a |
G

[K(t, f (t+ } ))&K(t, f ( } ))] d+(t)&
+\ _2a |

G
K(t, f ( } )) d+(t)&A b f ( } )&=J1+J2 .

By the assumption that K is (L, �)-Lipschitz, we get

"|G
[K(t, f (t+ } ))&K(t, f ( } ))] d+(t)"F

�|
G

L(t) �(t, & f (t+ } )& f ( } )&E) d+(t)
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and so by applying quasimonotonicity and J-convexity of \~ , we have

J1 �M\~ _2aM |
G

L(t) �(t, & f (t+ } )& f ( } )&E) d+(t)&
�M |

G
p(t) \~ [2aDM�(t, & f (t+ } )& f ( } )&E)] d+(t).

By assumption that [\~ , �, '] is properly directed, for every * # ]0, 1[ and
for a # ]0, C*(2DM)&1[ we deduce, for U # U,

J1 �M |
G

p(t) '[*( f (t+ } )& f ( } ))] d+(t)

�M|(*f, U)+M |
G"U

p(t) '[*( f (t+ } )& f ( } ))] d+(t)=J 1
1+J 2

1 .

Now by the properties of the modular ' and from {-subboundedness of ',
we get

J 2
1 �M |

G"U
p(t) '[2*( f (t+ } ))] d+(t)+M |

G"U
p(t) '[2*f ( } )] d+(t)

�Mc1 |
G"U

p(t) '[2*c2 f ( } )] d+(t)+Mh0 |
G"U

p(t) d+(t)

+M'(2*f ( } )) |
G"U

p(t) d+(t)

�[2Mc1'(2*c2 f )+Mh0] |
G"U

p(t) d+(t).

Thus we obtain the estimation for J1 :

J1�M[2c1 '(2*c2 f )+h0] |
G"U

p(t) d+(t)+M|'(*f, U).

Finally putting G1=[s # G : A b f (s){0], we have

J2 =\~ _2a "|G
K(t, f ( } )) d+(t)&(A b f )( } )"F

/G1
( } )&

�M\~ [2aMr0 &A b f &F]

and so the inequality (1) follows.
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3. A MEASURABILITY RESULT

We now explain in detail the notions introduced in Section 2. Let G/R
be a compact interval [a, b] or G=R. In the first case we denote by
L0(G) the set of all the (b&a)-periodic functions f # L0(R). In the second
case L0(G) will mean the set of all functions f # L0(R) which are of bounded
support. Let + be the Lebesgue measure on the _-algebra of all Lebesgue
measurable subsets of G.

Let _: G_G � G be a (_? , 7)-measurable function. We will say that +?

is _-absolutely continuous with respect to + if for every set A # 7 such that
+(A)=0 there holds +?(_&1(A))=0. There holds the following:

Proposition 1. Let E be an arbitrary measurable subset of Rn, F=R
and let _: G_G � G be (7?n7)-measurable. Let +? be _-absolutely continuous
with respect to +. Let K: G_E � R be a function which is measurable with
respect to t # G for every u # E and continuous in u # E for every t # G. Then the
function K: G_E � R defined by K(s, t)=K(t, f (_(s, t))) for s, t # G is
7? -measurable in G_G.

Proof. We limit ourselves to the case n=1. Let f # L0(G). Suppose
G=R, so that f has a bounded support. Let us denote by [a, b] an interval
such that supp f/[a, b]. By Fre� chet's theorem there is a sequence ( fk) of
continuous functions on [a, b], convergent to f a.e. in [a, b] (see, e.g.,
[5]). Denoting by A the set of t # G for which the sequence ( fk(t)) does not
converge to f (t), we have +(A)=0. Hence +?(_&1(A))=0. If (s, t) � _&1(A),
i.e., _(s, t) � A, then fk(_(s, t)) � f (_(s, t)) as k � +�, whence fk(_(s, t))
� f (_(s, t)) as k � � +? -a.e. in G_G. Since K(t, u) is a continuous
function of u�0 for every t # G, we obtain

K(t, fk(_(s, t))) � K(t, f (_(s, t)))

+? -a.e. in G_G. This reduces the proof to the case of continuous functions,
since if K(: , fk(_( } , : ))) are proved to be 7?-measurable, the same also
holds for the function K(: , f (_( } , : ))) by virtue of the completeness of +?

in G_G. So let us now suppose f to be continuous in G. Let (_i) be a
sequence of simple functions in (G_G, 7? , +?), convergent to _ for all
(s, t) # G_G; i.e., there are pairwise disjoint sets A (i)

1 , ..., A (i)
&i

# 7? and
constants c (i)

1 , ..., c (i)
&i

# R such that _i (s, t)=�&i
j=1

c (i)
j /Aj

(j) (s, t) converges to
_(s, t) for all s, t # G. By continuity of f and also of K(t, } ), we obtain:

K(t, f (_(s, t)))= lim
i � +�

K(t, f (_ i (s, t)))

= lim
i � +�

:
&i

j=1

K(t, f (c (i)
j )) /Aj

(i ) (s, t).
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But the function at the right-hand side of the above equality is 7?-measurable
in G_G. Thus K(: , f (_( } , : ))) is 7? -measurable.

Example 1. If _(s, t)=s+t, (eventually extended by periodicity to
R2), then +? is _-a.c. with respect to the Lebesgue measure on G.

4. AN EXISTENCE THEOREM FOR THE OPERATOR T IN
ORLICZ�SOBOLEV SPACES

Let AC (n&2)(G) be the space of all functions f: G � R of compact
support in R (in case of G=R), or (b&a)-periodic in R (in case G=
[a, b]), possessing absolutely continuous derivatives up to the order n&2,
inclusively. We denote by E the set of points of Rn of the form Dn f (t)=
( f (t), f $(t), ..., f (n&2)(t), f (n&1)(t)), where f (n&1) exists a.e. in G and is
integrable on G. By Proposition 1 and Example 1, the function

K(s, t)=K(t, Dn f (s+t))=K(t, f (s+t), f $(s+t), ..., f (n&1)(s+t))

is 7? -measurable in G_G. Hence the integral

|
G

|K(t, Dn f (s+t))| dt

exists for a.e. s # G; however, it may be infinite. Now, let .: G_R+
0 � R+

0

be a .-function depending on a parameter, i.e., .( } , u) is measurable for all
u�0, .(t, 0)=0, .(t, u)>0 for u>0, .(t, } ) is continuous and nondecreas-
ing, for all t # G. If .(t, } ) is convex, for every t # G and .(t, u) u&1 � 0 as
u � 0 as u � 0, .(t, u) u&1 � +� as u � +�, the .-function is said to be
an N-function. For any .-function ., the modular

'( f )= :
n&1

k=0
|

G
.(t, | f (k)(t)| ) dt (2)

defines a modular space AC (n&2)
' (G) denoted usually by W .

n&1(G) and
called the generalized Orlicz�Sobolev space generated by .. Obviously '
may be extended as a modular defined on the set L0(G, Rn) of all measurable
vector-valued functions f� : G � Rn by the formula

'� ( f� )= :
n&1

k=0
|

G
.(t, | fk(t)| ) dt,

where f� (t)=( f0(t), ..., fn&1(t)), for t # G.
We have then for f # W .

n&1(G) the relation '( f )='� (Dn f ).
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We shall need the notion of {-boundedness of the function .. The func-
tion . is called weakly {-bounded if there exist a constant c�1 and a
measurable function !: G_G � R+

0 such that sups # G �G !(s, t) dt<+� for
a.e. s # G, satisfying the inequality

.(t&s, u)�.(t, cu)+!(s, t)

for s, t # G and u�0. If, moreover, there holds �G !(s, t) dt � 0 as s � 0,
then . will be called {-bounded.

Now, let A # L(Rn, R) be fixed; we have the following:

Theorem 2. Let . be a weakly {-bounded N-function depending on a
parameter t # G. Let K be an (L, �)0 -Lipschitz kernel function with respect
to A, where L( } ) �( } , 1) # L1(C) & L.*(C), for every compact C/G, where
.* is the N-function, complementary to . in the sense of Young. Let

(Tf )(s)=|
G

K(t, f (s+t), f $(s+t), ..., f (n&1)(s+t)) dt (3)

for s # G and let Dom T be the domain of the operator T. Then

W.
n&1(G)/Dom T.

Proof. We will consider the case when G=R and the function f has
compact support. First, we prove that

|
G

|K(t, Dn f (s+t))| dt<+� (4)

for a.e. s # G, supposing f # W .
n&1(G). Let f # L0(G) be a fixed function.

Since f has compact support, also the function f (s+ } ) has compact sup-
port for a.e. s # R; we denote by Rs an interval containing such support.
For such s # R let us write

A=[t # G : &Dn f (t+s)&R n>1], A$=G"A.

Since K is a kernel function with respect to A, we obtain

|
G

|K(t, Dn f (s+t))| dt

=|
Rs

|K(t, Dn f (s+t))| dt

�|
A

L(t) �(t, &Dn f (s+t)&Rn) dt+|
Rs

L(t) �(t, 1) dt.
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We have only to prove that the first term at the right-hand side of the
above inequality is finite. By concavity of � we have �(t, u)��(t, 1) u, for
u>1. Hence

|
A

L(t) �(t, &Dn f (s+t)&Rn) dt�|
A

L(t) �(t, 1) &Dn f (s+t)&R n dt

�|
A

L(t) �(t, 1) :
n&2

k=0

| f (k)(s+t)| dt

+|
A

L(t) �(t, 1) | f (n&1)(s+t)| dt.

Now �n&2
k=0 | f (k)(s+t)| is continuous and bounded as a function of the

variable t # R. Consequently the first term at the right-hand side of the above
inequality is finite. Taking in the Young inequality, uv�.*(t, u)+.(t, v),

u=*L(t) �(t, 1), v=* | f (n&1)(t)|,

for t # G=R and *>0, we obtain

|
A

L(t) �(t, 1) | f (n&1)(s+t)| dt�
1
*2 |

Rs

.*(t, *L(t) �(t, 1)) dt

+
1
*2 |

Rs

.(t, * | f (n&1)(s+t)| ) dt.

The first term at the right-hand side of the last inequality is finite for
sufficiently small *>0, because L( } ) �( } , 1) # L.*(C), for every compact
C/G. In order to estimate the second term, we apply the weak {-bounded-
ness of . and we obtain

|
Rs

.(t, * | f (n&1)(s+t)| ) dt

=|
Rs+s

.(t&s, * | f (n&1)(t)| ) dt

�|
b

a
.(t, *c | f (n&1)(t)| ) dt+|

b

a
!(s, t) dt<+�

for sufficiently small *>0 and where [a, b] is any compact interval which
contains Rs+s, for the fixed s # R. Consequently we obtain the relation (4).
Applying the inequality (4) to the positive and negative parts of K and
applying the Fubini�Tonelli theorem, we obtain f # Dom T.
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Remark 1. When the N-function . satisfies the condition .(t, u) u&1 �
+� as u � +� uniformly with respect to t on each compact set C, we
have L.*(C)/L1(C), for any compact C/R, and we may replace the
assumption L( } ) �( } , 1) # L1(C) & L.*(C) by L( } ) �( } , 1) # L.*(C). For
example, this always happens when . does not depend on the parameter t.

5. AN EMBEDDING THEOREM FOR THE OPERATOR T

We are going now to give an embedding theorem for the operator T. As
before G denotes the real line R (by considering functions with compact
support) or G=[a, b] (by considering periodic extensions of the involved
functions).

Theorem 3. Let the assumption of Theorem 2 be satisfied and let \ be a
modular in L0(G), quasimonotone with a constant M>0, J-convex, and
such that the triple [\, �, '� ] is properly directed, where '� is the extension of
the modular ' defined by (2), as described in the previous section. Then the
operator T defined by (3) maps the space W .

n&1(G) into the modular space
L0

\(G) and

\(aTf )�M['(*cf )+h0] (5)

for f # W .
n&1(G), 0<*<1, and 0<a<C*(DM)&1.

Proof. Since . is weakly {-bounded, so the modular ' defined by (2) is
{-subbounded, because for f # W .

n&1(G) we have

'( f ( } +t))= :
n&1

k=0
|

G
.(s, | f (k)(s+t)| ) ds

� :
n&1

k=0
|

G
.(s, c | f (k)(s)| ) ds+n |

G
!(t, s) ds

�'(cf )+h0 ,

where h0=n supt # G �G !(t, s) ds. Consequently we have, for every 0<*<1
and a>0,

\(aTf )�M\ _|G
p(t) aDM�(t, &Dn f ( } +t)&Rn) dt&

�M |
G

p(t) \(aDM�(t, &Dn f ( } +t)&R n)) dt
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�M |
G

p(t) '� (*Dn f ( } +t)) dt

�M'(*cf )+Mh0<+�,

that is (5); as a direct consequence, Tf # L0
\(G).

6. APPROXIMATION THEOREMS IN W .
n&1(G)

We are going now to formulate the approximation theorem (Theorem 1)
in the special case of generalized Orlicz�Sobolev spaces W .

n&1(G), taking
the modular ' defined by formula (2) and defining the linear continuous
functional A: Rn � R by A(u0 , ..., un&1)=u0 . If . is weakly {-bounded with
a function !, then ' is {-subbounded with a constant h0=n supt # G �G !(t, s) ds
(see the proof of Theorem 3).

Let us also remark that K(t, u0 , u1 , ..., un&1)=0 if u0=Au=0; that is,
K(t, 0, u1 , ..., un&1)=0, for arbitrary t # G and u1 , ..., un&1 # R. Thus Theorem
1 yields the following

Theorem 4. Let G be defined as in Section 5. Let \ be a J-convex,
quasimonotone (with constant M�1) modular on L0(G). Let ' be the
modular defined by (2), generated by a weakly {-bounded, .-function ., and
let '� be the extension of the modular ' as defined in Section 4. Let [\, �, '� ]
be a properly directed triple, and let K: G_Rn � R be an (L, �)-Lipschitz
kernel function, where K(t, 0, u1 , ..., un&1)=0, for any t # G and u1 , ..., un&1 # R.
Then for any f # Dom T & W .

n&1 , U # U, * # ]0, 1[, and a # ]0, C*(2DM)&1[
there holds the inequality

\[a(Tf &f )]�M|'(*f, U)+M[2'(2*cf )+h0]

_|
G"U

p(t) dt+M\(2aMr0 f ),

where D=�G L(t) dt, p(t)=L(t) D&1,

r0= sup
u0{0 }

1
u0

|
G

K(t, u0 , ..., un&1) dt&1 },
and h0 is the constant of the {-subboundedness of '.

Now we are going to investigate the '-modulus of continuity |' for the
modular defined in (2). As U we take the family of intervals U$=[&$, $],
where $>0. Then we have for an arbitrary *>0 and f # W .

n&1(G),
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|'(*f, U$)= sup
|t|�$ { :

n&2

k=0
|

G
.(s, * | f (k)(t+s)& f (k)(s)| ) ds

+|
G

.(s, * | f (n&1)(t+s)& f (n&1)(s)| ) ds=
� :

n&2

k=0
|

G
.(s, *|( f (k), $)) ds+|'1

(*f (n&1), $), (6)

where |(g, $)=sup |t| �$ sups # G | g(t+s)& g(s)| and

'1(g)=|
G

.(t, | g(t)| ) dt.

We recall that a .-function . is called locally integrable on G if .( } , u) #
L1(C) for every compact set C/G, for any u # R+

0 . Under the notations of
Section 5 there holds the following:

Proposition 2. Let . be a {-bounded, locally integrable, .-function
depending on a parameter. Then for every function f # W .

n&1(G) there exists
a number *>0 such that:

lim
$ � 0

|'(*f, U$)=0.

Proof. Suppose that G=R has f has a compact support C. Since
f (k) # C(G), for k=0, 1, ..., n&2, so |( f (k), $) � 0 as $ � 0 for k=1, ...,
n&2. Let us take $0>0 so small that |( f (k), $0)<1. Let D/G be a
compact set such that [&$0 , $0]+C/D. So f (k)(s+t)& f (k)(s)=0 for
s � D, for every t # [&$0 , $0]. Thus for the above indices k, we have for
0<$<$0

:
n&2

k=0
|

G
.(s, *|( f (k), $)) ds� :

n&2

k=0

|( f (k), $) |
D

.(s, *) ds � 0

as $ � 0, by the local integrability of ., for every *>0. Applying the
inequality (6) it is enough to prove that |'1

(*f, $) � 0 as $ � 0 for g # L.(G)
and sufficiently small *>0. Here L.(G) is the Musielak�Orlicz space
generated by the function .. Now, since �D .(s, u) ds<+� for all u�0,
the modular '1 is monotone, absolutely finite, and absolutely continuous
modular on L.(G) such that '1( f (t+ } ))�'1(cf )+h(t) with some c�1,
and h(t) � 0 as t � 0, and f # L0(G) (see [3]). By [3, Theorem 2], we
obtain |'1

(*g, $) � 0 as $ � 0 for sufficiently small *>0.
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Remark 2. We remark that the previous theorem can be proved also
when G=[a, b] and the involved functions are extended by periodicity
outside the interval [a, b]. Moreover, we point out that if in Theorem 4 the
assumptions of Theorem 2 are satisfied, then one may replace the require-
ment f # Dom T & W .

n&1 with simply f # W .
n&1 .

Theorem 4 and Proposition 2 may be applied in order to obtain a
convergence theorem. Arguing as, for example, in [2], we introduce an
abstract nonempty set W of indices w filtered by a family W of its subsets.
In place of one kernel function K we take a family K=(Kw)w # W of kernel
functions, which we call a kernel. We assume that Kw(t, u0 , u1 , ..., un&1)=0
whenever u0=0, for all w # W. Let L=(Lw)w # W be a family of nonnegative
functions Lw # L1(G) and let Dw=�G pw(t) dt, pw(t)=Lw(t) D&1

w . The
kernel K is said to be (L, �)-Lipschitz if the kernel functions Kw are
(Lw , �)-Lipschitz, for all w # W. Let D=supw # W Dw<+�. We say that
the kernel K is strongly singular if

|
G"U$

pw(t) dt w�W 0

and

r0(w)= sup
u0{0 }

1
u |

G
Kw(t, u0 , ..., un&1) dt&1 } w�W 0,

where w�W represents the convergence with respect to the filter W. Denote
now by T=(Tw) the corresponding family of operators

(Tw f )(s)=|
G

Kw(t, Dn f (s+t)) dt

for w # W and f # Dom T=�w # W Dom Tw . Then the following theorem
may be derived, applying Theorem 4 and Proposition 2, in an analogous
manner as in [2, Theorem 2]:

Theorem 5. Let G be as in Section 5. Let \ be a J-convex, quasimonotone
modular on L0(G). Let . be a {-bounded, locally integrable .-function depend-
ing on a parameter, let ' be the modular defined on W .

n&1(G) by the formula (2),
and let us suppose that the triple [\, �, '� ] is properly directed. Let K=
(Kw)w # W be a strongly singular, (L, �)-Lipschitz kernel such that K(t, 0,
u1 , ..., un&1)=0 for t # G and u1 , ..., un&1 # R. Let f # L0

\(G) & W .
n&1(G) &

Dom T. Then

\[a(Tw f &f )] w�W 0

for sufficiently small a>0.
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Remarks. 1. Let us remark that if additionally there are satisfied the
assumptions of Theorem 2 then one may replace the requirement f # L0

\(G)
& W .

n&1(G) & Dom T simply by f # L0
\(G) & W .

n&1(G).

2. Theorem 5 remains true if we replace the strong singularity of the
kernel by the singularity, i.e.,

rk(w)= sup
1�k�|u0 |�k }

1
u0

|
G

Kw(t, u0 , ..., un&1) dt&1 } w�W 0

for k=1, 2, .... In this case we have to assume that the modular \ is finite
and absolutely continuous (see also [2]).

3. The theory developed in this paper can be easily generalized by
relaxing the J-convexity of \~ . Indeed we can assume that \~ is M-quasi-
convex. This concept was introduced in [4]; we remark that the related
concept for functions was given in [6, 7].

REFERENCES

1. C. Bardaro and G. Vinti, Modular approximation by nonlinear integral operators on
locally compact groups, Comm. Math. 35 (1995), 25�47.

2. C. Bardaro, J. Musielak, and G. Vinti, Approximation by nonlinear integral operators in
some modular function spaces, Ann. Polonici Math. 63 (1996), 173�182.

3. C. Bardaro, J. Musielak, and G. Vinti, On the definition and properties of a general
modulus of continuity, Math. Japonica 43 (1996), 445�450.

4. C. Bardaro, J. Musielak, and G. Vinti, Some modular inequalities related to Fubini�
Tonelli theorem, Proc. A. Razmadze Math. Inst. Georgia 118 (1998), 3�19.

5. G. B. Folland, ``Real Analysis: Modern Techniques and Their Applications,'' Wiley, New
York, 1984.

6. A. Gogatishvili and V. Kokilashvili, Criteria of weighted inequalities in Orlicz classes for
maximal functions defined on homogeneous type spaces, Proc. Georgian Acad. Sci. Math.
6 (1993), 617�645.

7. I. Mantellini and G. Vinti, Modular estimates for nonlinear integral operators and
applications in fractional calculus, Numer. Functional Anal. Optim. 17 (1996), 143�165.

8. J. Musielak, Nonlinear approximation in some modular function spaces I, Math. Japonica
38 (1993), 83�90.

9. J. Musielak, Orlicz spaces and modular spaces, in ``Lecture Notes in Math.,'' Springer-Verlag,
Berlin�New York, 1983.

10. J. Musielak, On nonlinear integral operators, Atti Sem. Mat. Fis. Univ. Modena 57 (1999),
247�254.

11. A. Musielak and J. Musielak, On nonlinear integral operators in function spaces, Math.
Japonica 48 (1998), 257�266.

251NONLINEAR INTEGRO-DIFFERENTIAL OPERATORS


	1. NOTATIONS AND DEFINITIONS 
	2. AN ESTIMATE FOR THE ERROR OF APPROXIMATION 
	3. A MEASURABILITY RESULT 
	4. AN EXISTENCE THEOREM FOR THE OPERATOR T IN ORLICZ-SOBOLEV SPACES 
	5. AN EMBEDDING THEOREM FOR THE OPERATOR T 
	REFERENCES 

