On Nonlinear Integro-differential Operators in Generalized Orlicz–Sobolev Spaces

Carlo Bardaro

Dipartimento di Matematica e Informatica, Università degli Studi, Via Vanvitelli, 1, 06123 Perugia, Italy E-mail: bardaro@dipmat.unipg.it

Julian Musielak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznan, Poland

and

Gianluca Vinti1

Dipartimento di Matematica e Informatica, Università degli Studi, Via Vanvitelli, 1, 06123 Perugia, Italy E-mail: mategian@unipg.it

Communicated by Rolf J. Nessel

Received December 10, 1998; accepted in revised form January 31, 2000

A nonlinear integral operator T of the form

$$(Tf)(s) = \int_G K(t, f(\sigma(s, t))) \, d\mu(t),$$

for $s \in G$, is defined and investigated in the measure space (G, Σ, μ) , where *f* and *K* are vector-valued functions with values in normed linear spaces *E* and *F*, respectively. The results are applied to the case of integro-differential operators in generalized Orlicz–Sobolev spaces. There are studied problems of existence, embeddings, and approximation by means of *T*. © 2000 Academic Press

Key Words: approximation by strongly singular integrals; Orlicz–Sobolev space; modular space; nonlinear integro-differential operator; generalized Lipschitz condition.

¹ This paper was written when the second author was a visiting professor of the C.N.R. at the Dipartimento di Matematica, Università degli Studi di Perugia.

1. NOTATIONS AND DEFINITIONS

Let *E*, *F* be two normed linear spaces with norms $\| \|_{E}$, $\| \|_{F}$, respectively, and let *G* be a nonempty abstract set with a commutative operation "+" such that if *s*, $t \in G$ then $s + t \in G$. We assume that (G, Σ, μ) is a measure space with a σ -finite, complete measure μ . Let μ_{π} be the completion of the product measure $\mu \times \mu$ in $G \times G$ defined on the completion of the product σ -algebra, denoted by Σ_{π} .

We shall say that the product measure μ_{π} is *absolutely continuous* with respect to μ if for every set $A \in \Sigma$ such that $\mu(A) = 0$ there holds $\mu_{\pi}(A_{-1})$ = 0 where $A_{-1} = \{(x, y) \in G \times G : x + y \in A\}$. We shall denote by $L^{0}(G, E)$ (resp. $L^{0}(G, F)$), the space of all strongly Σ -measurable vector-valued functions $f: G \to E$ (resp. $g: G \to F$) with equality μ -almost everywhere. We shall write also $L^{0}(G) = L^{0}(G, \mathbb{R})$. $L^{1}(G, E)$ (resp. $L^{1}(G, F)$) will mean the space of Bochner integrable functions $f \in L^{0}(G, E)$ (resp. $L^{0}(G, F)$) with respect to the measure μ . Let $\mathcal{A} \in \mathcal{L}(E, F)$; i.e., \mathcal{A} is a linear continuous operator from E to F.

We shall say that $K: G \times E \to F$ is a *kernel function* with respect to \mathscr{A} if $\mathscr{A}u = 0$ implies K(t, u) = 0 for all $t \in G$, $u \in E$ and $K(\cdot, u) \in L^1(G, F)$ for all $u \in E$. Let $L: G \to \mathbb{R}_0^+ = [0, +\infty[, L \in L^1(G) = L^1(G, \mathbb{R});$ in the following we assume $D = \int_G L(t) d\mu(t) > 0$ and we put $p(t) = L(t) D^{-1}$. Let $\psi: G \times \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfy the following conditions: $\psi(\cdot, x)$ is Σ -measurable for all $x \ge 0$; $\psi(t, \cdot)$ is continuous and nondecreasing, $\psi(t, 0) = 0$, $\psi(t, x) > 0$, for x > 0, $\psi(t, x) \to +\infty$ as $x \to +\infty$, for all $t \in G$. If additionally $\psi(t, \cdot)$ is concave for all $t \in G$ we say that ψ is *concave*. A kernel function K will be called $(L, \psi)_0$ -Lipschitz if there holds the inequality $||K(t, u)||_F \le L(t) \psi(t, ||u||_E)$, for all $t \in G$, $u \in E$. K will be called (L, ψ) -Lipschitz if there holds the inequality

$$||K(t, u) - K(t, v)||_{F} \leq L(t) \psi(t, ||u - v||_{E}),$$

for all $t \in G$, u, $v \in E$ (for these notions see [1, 2, 10, 11]).

We define an operator T by the formula

$$(Tf)(s) = \int_G K(t, f(s+t)) \, d\mu(t)$$

for all functions $f \in L^0(G, E)$ such that the above Bochner integral exists for μ —a.e. $s \in G$, and $Tf \in L^0(G, F)$. The set of all such functions f will be denoted by Dom T and called the *domain of the operator* T.

Let η , ρ be two modulars on $L^0(G, E)$, $L^0(G, F)$, respectively, and let $\tilde{\rho}$ be a modular on $L^0(G)$. We suppose that $\rho(f) = \tilde{\rho}(||f||_F)$, for $f \in L^0(G, F)$. We recall here that a *modular* on a real vector space X is a functional $\gamma: X \to [0, +\infty]$ such that $\gamma(x) = 0$ if and only if x = 0; $\gamma(x) = \gamma(-x)$, for every $x \in X$; $\gamma(ax + by) \leq \gamma(x) + \gamma(y)$, for every $x, y \in X$, and $a, b \in \mathbb{R}_0^+$, a + b = 1. We note that the last property implies that for any modular γ we have $\gamma(ax) \leq \gamma(bx)$, for every $x \in X$, and $a, b \in \mathbb{R}_+$, with $a \leq b$.

The modular space generated in $L^0(G, E)$ by η will be denoted by $L^0_n(G, E)$, being

$$L^{0}_{\eta}(G, E) = \{ f \in L^{0}(G, E) : \lim_{\lambda \to 0} \eta(\lambda f) = 0 \};$$

analogously by $L^0_{\rho}(G, F)$ we will denote the modular space generated in $L^0(G, F)$ by ρ , (see [9]). The modular $\tilde{\rho}$ is called \mathscr{J} -convex if for every two measurable functions $p: G \to \mathbb{R}^+_0$, with $\int_G p(t) d\mu(t) = 1$ and $\xi: G \times G \to \mathbb{R}$, the inequality

$$\tilde{\rho}\left(\int_{G} p(t) |\xi(t, \cdot)| d\mu(t)\right) \leq \int_{G} p(t) \,\tilde{\rho}(|\xi(t, \cdot)|) d\mu(t)$$

holds (see [2]).

The modular $\tilde{\rho}$ is called *quasimonotone* if there is a constant $M \ge 1$ such that if $f_1, f_2 \in L^0(G)$ with $|f_1| \le |f_2|$, then $\tilde{\rho}(f_1) \le M \tilde{\rho}(M f_2)$.

The modular η is called τ -subbounded if there exist constants $c_1, c_2 \ge 1$, and $h_0 \ge 0$ such that

$$\eta(f(t+\cdot)) \leqslant c_1 \eta(c_2 f) + h_0$$

for all $f \in L^0(G, F)$.

We call $\{\tilde{\rho}, \psi, \eta\}$ a properly directed triple if there is a set $G_0 \subset G$, $G_0 \in \Sigma$, $\mu(G \setminus G_0) = 0$ such that for every $\lambda \in]0, 1[$ there exists a $C_{\lambda} \in]0, 1[$ satisfying the inequality

$$\tilde{\rho}[C_{\lambda}\psi(t, \|\xi(\cdot)\|_{E})] \leq \eta[\lambda\xi(\cdot)],$$

for all $t \in G_0$ and $\xi \in L^0(G, E)$. This implies the inequality

$$\tilde{\rho}[C_{\lambda}\psi(t, \|\xi_t(\cdot)\|_E)] \leq \eta[\lambda\xi_t(\cdot)]$$

for all $t \in G_0$ and any family $(\xi_t(\cdot))_{t \in G}$ of functions $\xi_t \in L^0(G, E)$ (see [1, 2]).

2. AN ESTIMATE FOR THE ERROR OF APPROXIMATION

We are going to estimate $\rho(a(Tf - \mathcal{A} \circ f))$, for $f \in \text{Dom } T$, a > 0, by means of η . We shall need the notion of η -modulus continuity ω_{η} of a function

 $f \in L^0(G, E)$. Let \mathscr{U} be a nonempty family of sets $U \in \Sigma$, $U \neq \emptyset$. Then ω_η : $L^0(G, E) \times \mathscr{U} \to \overline{\mathbb{R}}_0^+ = [0, +\infty]$ is defined by the formula

$$\omega_{\eta}(f, U) = \sup_{t \in U} \eta(f(t + \cdot) - f(\cdot))$$

(see [3, 8]). There holds the following:

THEOREM 1. Let η , ρ be modulars on $L^0(G, E)$, $L^0(G, F)$, respectively, and let $\tilde{\rho}$ be quasimonotone with a constant $M \ge 1$ and \mathscr{J} -convex modular on $L^0(G)$. Moreover, let ρ be of the form $\rho(f) = \tilde{\rho}(||f||_F)$ and let τ -subbounded with constants $c_1, c_2 \ge 1$, $h_0 \ge 0$. Let $\{\tilde{\rho}, \psi, \eta\}$ be a properly directed triple and let K be an (L, ψ) -Lipschitz kernel function. Then for every $f \in Dom T$, $U \in \mathscr{U}, \lambda \in]0, 1[$, and $a \in]0, C_{\lambda}(2DM)^{-1}[$, there holds the inequality

$$\rho(a(Tf - \mathscr{A} \circ f)) \leq M\omega_{\eta}(\lambda f, U) + M\{2c_{1}\eta(2\lambda c_{2}f(\cdot)) + h_{0}\}$$
$$\times \int_{G \setminus U} p(t) d\mu(t) + M\tilde{\rho}(2aMr_{0} \|\mathscr{A} \circ f\|_{F}), \qquad (1)$$

where $D = \int_{G} L(t) d\mu(t)$, $p(t) = L(t) D^{-1}$, and

$$r_0 = \sup_{u \in E, \, \mathscr{A}u \neq 0} \frac{1}{\|\mathscr{A}u\|_F} \left\| \int_G K(t, u) \, d\mu(t) - \mathscr{A}u \right\|_F.$$

Proof. Obviously we can assume that $f \in L^0_{\eta}(G, E)$, otherwise the righthand side of (1) would be infinite. By the properties of the modular ρ we have, for any a > 0,

$$\begin{split} \rho[a(Tf - \mathscr{A} \circ f)] &\leq \rho \left[2a \int_{G} \left\{ K(t, f(t + \cdot)) - K(t, f(\cdot)) \right\} d\mu(t) \right] \\ &+ \rho \left[2a \int_{G} K(t, f(\cdot)) d\mu(t) - \mathscr{A} \circ f(\cdot) \right] = J_1 + J_2. \end{split}$$

By the assumption that K is (L, ψ) -Lipschitz, we get

$$\left\| \int_{G} \left\{ K(t, f(t+\cdot)) - K(t, f(\cdot)) \right\} d\mu(t) \right\|_{F}$$

$$\leq \int_{G} L(t) \psi(t, \|f(t+\cdot) - f(\cdot)\|_{E}) d\mu(t)$$

and so by applying quasimonotonicity and \mathscr{J} -convexity of $\tilde{\rho}$, we have

$$\begin{split} J_1 &\leqslant M \tilde{\rho} \left[\ 2aM \int_G L(t) \ \psi(t, \| f(t+\cdot) - f(\cdot) \|_E) \ d\mu(t) \right] \\ &\leqslant M \int_G p(t) \ \tilde{\rho} [\ 2aDM \psi(t, \| f(t+\cdot) - f(\cdot) \|_E)] \ d\mu(t). \end{split}$$

By assumption that $\{\tilde{\rho}, \psi, \eta\}$ is properly directed, for every $\lambda \in]0, 1[$ and for $a \in]0, C_{\lambda}(2DM)^{-1}[$ we deduce, for $U \in \mathcal{U}$,

$$\begin{split} J_1 &\leq M \int_G p(t) \, \eta \big[\, \lambda(f(t+\,\cdot\,) - f(\,\cdot\,)) \big] \, d\mu(t) \\ &\leq M \omega(\lambda f, \, U) + M \int_{G \setminus U} p(t) \, \eta \big[\, \lambda(f(t+\,\cdot\,) - f(\,\cdot\,)) \big] \, d\mu(t) = J_1^1 + J_1^2. \end{split}$$

Now by the properties of the modular η and from τ -subboundedness of η , we get

$$\begin{split} J_1^2 &\leq M \int_{G \setminus U} p(t) \eta [2\lambda(f(t+\cdot))] \, d\mu(t) + M \int_{G \setminus U} p(t) \eta [2\lambda f(\cdot)] \, d\mu(t) \\ &\leq M c_1 \int_{G \setminus U} p(t) \eta [2\lambda c_2 f(\cdot)] \, d\mu(t) + M h_0 \int_{G \setminus U} p(t) \, d\mu(t) \\ &\quad + M \eta (2\lambda f(\cdot)) \int_{G \setminus U} p(t) \, d\mu(t) \\ &\leq [2M c_1 \eta (2\lambda c_2 f) + M h_0] \int_{G \setminus U} p(t) \, d\mu(t). \end{split}$$

Thus we obtain the estimation for J_1 :

$$J_1 \leq M[2c_1\eta(2\lambda c_2 f) + h_0] \int_{G \setminus U} p(t) \, d\mu(t) + M\omega_\eta(\lambda f, U)$$

Finally putting $G_1 = \{s \in G : \mathscr{A} \circ f(s) \neq 0\}$, we have

$$\begin{split} J_2 &= \tilde{\rho} \left[2a \left\| \int_G K(t, f(\cdot)) \, d\mu(t) - (\mathscr{A} \circ f)(\cdot) \right\|_F \chi_{G_1}(\cdot) \right] \\ &\leq M \tilde{\rho} [2a M r_0 \, \|\mathscr{A} \circ f\|_F] \end{split}$$

and so the inequality (1) follows.

3. A MEASURABILITY RESULT

We now explain in detail the notions introduced in Section 2. Let $G \subset \mathbb{R}$ be a compact interval [a, b] or $G = \mathbb{R}$. In the first case we denote by $\mathscr{L}^{0}(G)$ the set of all the (b-a)-periodic functions $f \in L^{0}(\mathbb{R})$. In the second case $\mathscr{L}^{0}(G)$ will mean the set of all functions $f \in L^{0}(\mathbb{R})$ which are of bounded support. Let μ be the Lebesgue measure on the σ -algebra of all Lebesgue measurable subsets of G.

Let $\sigma: G \times G \to G$ be a (σ_{π}, Σ) -measurable function. We will say that μ_{π} is σ -absolutely continuous with respect to μ if for every set $A \in \Sigma$ such that $\mu(A) = 0$ there holds $\mu_{\pi}(\sigma^{-1}(A)) = 0$. There holds the following:

PROPOSITION 1. Let *E* be an arbitrary measurable subset of \mathbb{R}^n , $F = \mathbb{R}$ and let $\sigma: G \times G \to G$ be $(\Sigma_{\pi} n \Sigma)$ -measurable. Let μ_{π} be σ -absolutely continuous with respect to μ . Let $K: G \times E \to \mathbb{R}$ be a function which is measurable with respect to $t \in G$ for every $u \in E$ and continuous in $u \in E$ for every $t \in G$. Then the function $\mathscr{H}: G \times E \to \mathbb{R}$ defined by $\mathscr{H}(s, t) = K(t, f(\sigma(s, t)))$ for $s, t \in G$ is Σ_{π} -measurable in $G \times G$.

Proof. We limit ourselves to the case n = 1. Let $f \in \mathcal{L}^0(G)$. Suppose $G = \mathbb{R}$, so that f has a bounded support. Let us denote by [a, b] an interval such that supp $f \subset [a, b]$. By Fréchet's theorem there is a sequence (f_k) of continuous functions on [a, b], convergent to f a.e. in [a, b] (see, e.g., [5]). Denoting by A the set of $t \in G$ for which the sequence $(f_k(t))$ does not converge to f(t), we have $\mu(A) = 0$. Hence $\mu_{\pi}(\sigma^{-1}(A)) = 0$. If $(s, t) \notin \sigma^{-1}(A)$, i.e., $\sigma(s, t) \notin A$, then $f_k(\sigma(s, t)) \to f(\sigma(s, t))$ as $k \to \infty$, whence $f_k(\sigma(s, t)) \to f(\sigma(s, t))$ as a continuous function of $u \ge 0$ for every $t \in G$, we obtain

$$K(t, f_k(\sigma(s, t))) \rightarrow K(t, f(\sigma(s, t)))$$

 μ_{π} -a.e. in $G \times G$. This reduces the proof to the case of continuous functions, since if $K(:, f_k(\sigma(\cdot, :)))$ are proved to be Σ_{π} -measurable, the same also holds for the function $K(:, f(\sigma(\cdot, :)))$ by virtue of the completeness of μ_{π} in $G \times G$. So let us now suppose f to be continuous in G. Let (σ_i) be a sequence of simple functions in $(G \times G, \Sigma_{\pi}, \mu_{\pi})$, convergent to σ for all $(s, t) \in G \times G$; i.e., there are pairwise disjoint sets $A_1^{(i)}, ..., A_{v_i}^{(i)} \in \Sigma_{\pi}$ and constants $c_1^{(i)}, ..., c_{v_i}^{(i)} \in \mathbb{R}$ such that $\sigma_i(s, t) = \sum_{j=1}^{v_i} c_j^{(i)} \chi_{A_j^{(j)}}(s, t)$ converges to $\sigma(s, t)$ for all $s, t \in G$. By continuity of f and also of $K(t, \cdot)$, we obtain:

$$K(t, f(\sigma(s, t))) = \lim_{i \to +\infty} K(t, f(\sigma_i(s, t)))$$
$$= \lim_{i \to +\infty} \sum_{j=1}^{v_i} K(t, f(c_j^{(i)})) \chi_{A_j^{(i)}}(s, t).$$

But the function at the right-hand side of the above equality is Σ_{π} -measurable in $G \times G$. Thus $K(:, f(\sigma(\cdot, :)))$ is Σ_{π} -measurable.

EXAMPLE 1. If $\sigma(s, t) = s + t$, (eventually extended by periodicity to \mathbb{R}^2), then μ_{π} is σ -a.c. with respect to the Lebesgue measure on *G*.

4. AN EXISTENCE THEOREM FOR THE OPERATOR *T* IN ORLICZ–SOBOLEV SPACES

Let $AC^{(n-2)}(G)$ be the space of all functions $f: G \to \mathbb{R}$ of compact support in \mathbb{R} (in case of $G = \mathbb{R}$), or (b-a)-periodic in \mathbb{R} (in case G = [a, b]), possessing absolutely continuous derivatives up to the order n-2, inclusively. We denote by E the set of points of \mathbb{R}^n of the form $D_n f(t) = (f(t), f'(t), ..., f^{(n-2)}(t), f^{(n-1)}(t))$, where $f^{(n-1)}$ exists a.e. in G and is integrable on G. By Proposition 1 and Example 1, the function

$$\mathscr{H}(s,t) = K(t, D_n f(s+t)) = K(t, f(s+t), f'(s+t), ..., f^{(n-1)}(s+t))$$

is Σ_{π} -measurable in $G \times G$. Hence the integral

$$\int_{G} |K(t, D_n f(s+t))| dt$$

exists for a.e. $s \in G$; however, it may be infinite. Now, let $\varphi: G \times \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be a φ -function depending on a parameter, i.e., $\varphi(\cdot, u)$ is measurable for all $u \ge 0$, $\varphi(t, 0) = 0$, $\varphi(t, u) > 0$ for u > 0, $\varphi(t, \cdot)$ is continuous and nondecreasing, for all $t \in G$. If $\varphi(t, \cdot)$ is convex, for every $t \in G$ and $\varphi(t, u) u^{-1} \to 0$ as $u \to 0$ as $u \to 0$, $\varphi(t, u) u^{-1} \to +\infty$ as $u \to +\infty$, the φ -function is said to be an *N*-function. For any φ -function φ , the modular

$$\eta(f) = \sum_{k=0}^{n-1} \int_{G} \varphi(t, |f^{(k)}(t)|) dt$$
(2)

defines a modular space $AC_{\eta}^{(n-2)}(G)$ denoted usually by $W_{n-1}^{\varphi}(G)$ and called the generalized Orlicz–Sobolev space generated by φ . Obviously η may be extended as a modular defined on the set $L^{0}(G, \mathbb{R}^{n})$ of all measurable vector-valued functions $\overline{f}: G \to \mathbb{R}^{n}$ by the formula

$$\bar{\eta}(\bar{f}) = \sum_{k=0}^{n-1} \int_{G} \varphi(t, |f_k(t)|) dt,$$

where $\bar{f}(t) = (f_0(t), ..., f_{n-1}(t))$, for $t \in G$.

We have then for $f \in W_{n-1}^{\varphi}(G)$ the relation $\eta(f) = \overline{\eta}(D_n f)$.

We shall need the notion of τ -boundedness of the function φ . The function φ is called *weakly* τ -bounded if there exist a constant $c \ge 1$ and a measurable function $\xi: G \times G \to \mathbb{R}_0^+$ such that $\sup_{s \in G} \int_G \xi(s, t) dt < +\infty$ for a.e. $s \in G$, satisfying the inequality

$$\varphi(t-s, u) \leq \varphi(t, cu) + \xi(s, t)$$

for s, $t \in G$ and $u \ge 0$. If, moreover, there holds $\int_G \xi(s, t) dt \to 0$ as $s \to 0$, then φ will be called τ -bounded.

Now, let $\mathscr{A} \in \mathscr{L}(\mathbb{R}^n, \mathbb{R})$ be fixed; we have the following:

THEOREM 2. Let φ be a weakly τ -bounded N-function depending on a parameter $t \in G$. Let K be an $(L, \psi)_0$ -Lipschitz kernel function with respect to \mathscr{A} , where $L(\cdot) \psi(\cdot, 1) \in L^1(C) \cap L^{\varphi^*}(C)$, for every compact $C \subset G$, where φ^* is the N-function, complementary to φ in the sense of Young. Let

$$(Tf)(s) = \int_{G} K(t, f(s+t), f'(s+t), ..., f^{(n-1)}(s+t)) dt$$
(3)

for $s \in G$ and let Dom T be the domain of the operator T. Then

$$W_{n-1}^{\varphi}(G) \subset Dom T.$$

Proof. We will consider the case when $G = \mathbb{R}$ and the function f has compact support. First, we prove that

$$\int_{G} |K(t, D_n f(s+t))| \, dt < +\infty \tag{4}$$

for a.e. $s \in G$, supposing $f \in W_{n-1}^{\varphi}(G)$. Let $f \in \mathcal{L}^{0}(G)$ be a fixed function. Since f has compact support, also the function $f(s + \cdot)$ has compact support for a.e. $s \in \mathbb{R}$; we denote by R_s an interval containing such support. For such $s \in \mathbb{R}$ let us write

$$A = \{ t \in G : \|D_n f(t+s)\|_{\mathbb{R}^n} > 1 \}, \qquad A' = G \setminus A.$$

Since K is a kernel function with respect to \mathcal{A} , we obtain

$$\begin{split} \int_{G} |K(t, D_{n}f(s+t))| \, dt \\ &= \int_{R_{s}} |K(t, D_{n}f(s+t))| \, dt \\ &\leqslant \int_{A} L(t) \, \psi(t, \|D_{n}f(s+t)\|_{\mathbb{R}^{n}}) \, dt + \int_{R_{s}} L(t) \, \psi(t, 1) \, dt. \end{split}$$

We have only to prove that the first term at the right-hand side of the above inequality is finite. By concavity of ψ we have $\psi(t, u) \leq \psi(t, 1) u$, for u > 1. Hence

$$\begin{split} \int_{A} L(t) \, \psi(t, \, \|D_n f(s+t)\|_{\mathbb{R}^n}) \, dt &\leq \int_{A} L(t) \, \psi(t, 1) \, \|D_n f(s+t)\|_{\mathbb{R}^n} \, dt \\ &\leq \int_{A} L(t) \, \psi(t, 1) \, \sum_{k=0}^{n-2} |f^{(k)}(s+t)| \, dt \\ &+ \int_{A} L(t) \, \psi(t, 1) \, |f^{(n-1)}(s+t)| \, dt. \end{split}$$

Now $\sum_{k=0}^{n-2} |f^{(k)}(s+t)|$ is continuous and bounded as a function of the variable $t \in \mathbb{R}$. Consequently the first term at the right-hand side of the above inequality is finite. Taking in the Young inequality, $uv \leq \varphi^*(t, u) + \varphi(t, v)$,

$$u = \lambda L(t) \psi(t, 1), \qquad v = \lambda |f^{(n-1)}(t)|,$$

for $t \in G = \mathbb{R}$ and $\lambda > 0$, we obtain

$$\begin{split} \int_{\mathcal{A}} L(t) \, \psi(t,1) \, |f^{(n-1)}(s+t)| \, dt &\leq \frac{1}{\lambda^2} \int_{\mathcal{R}_s} \varphi^*(t, \lambda L(t) \, \psi(t,1)) \, dt \\ &+ \frac{1}{\lambda^2} \int_{\mathcal{R}_s} \varphi(t, \lambda \, |f^{(n-1)}(s+t)|) \, dt. \end{split}$$

The first term at the right-hand side of the last inequality is finite for sufficiently small $\lambda > 0$, because $L(\cdot) \psi(\cdot, 1) \in L^{\varphi^*}(C)$, for every compact $C \subset G$. In order to estimate the second term, we apply the weak τ -boundedness of φ and we obtain

$$\begin{split} \int_{R_s} \varphi(t, \lambda \mid f^{(n-1)}(s+t) \mid) \, dt \\ &= \int_{R_s+s} \varphi(t-s, \lambda \mid f^{(n-1)}(t) \mid) \, dt \\ &\leq \int_a^b \varphi(t, \lambda c \mid f^{(n-1)}(t) \mid) \, dt + \int_a^b \xi(s, t) \, dt < +\infty \end{split}$$

for sufficiently small $\lambda > 0$ and where [a, b] is any compact interval which contains $R_s + s$, for the fixed $s \in \mathbb{R}$. Consequently we obtain the relation (4). Applying the inequality (4) to the positive and negative parts of K and applying the Fubini–Tonelli theorem, we obtain $f \in \text{Dom } T$.

Remark 1. When the N-function φ satisfies the condition $\varphi(t, u) u^{-1} \rightarrow +\infty$ as $u \rightarrow +\infty$ uniformly with respect to t on each compact set C, we have $L^{\varphi^*}(C) \subset L^1(C)$, for any compact $C \subset \mathbb{R}$, and we may replace the assumption $L(\cdot) \psi(\cdot, 1) \in L^1(C) \cap L^{\varphi^*}(C)$ by $L(\cdot) \psi(\cdot, 1) \in L^{\varphi^*}(C)$. For example, this always happens when φ does not depend on the parameter t.

5. AN EMBEDDING THEOREM FOR THE OPERATOR T

We are going now to give an embedding theorem for the operator T. As before G denotes the real line \mathbb{R} (by considering functions with compact support) or G = [a, b] (by considering periodic extensions of the involved functions).

THEOREM 3. Let the assumption of Theorem 2 be satisfied and let ρ be a modular in $L^0(G)$, quasimonotone with a constant M > 0, \mathscr{J} -convex, and such that the triple $\{\rho, \psi, \overline{\eta}\}$ is properly directed, where $\overline{\eta}$ is the extension of the modular η defined by (2), as described in the previous section. Then the operator T defined by (3) maps the space $W^{\varphi}_{n-1}(G)$ into the modular space $L^0_{\rho}(G)$ and

$$\rho(aTf) \leqslant M[\eta(\lambda cf) + h_0] \tag{5}$$

for $f \in W_{n-1}^{\varphi}(G)$, $0 < \lambda < 1$, and $0 < a < C_{\lambda}(DM)^{-1}$.

Proof. Since φ is weakly τ -bounded, so the modular η defined by (2) is τ -subbounded, because for $f \in W_{n-1}^{\varphi}(G)$ we have

$$\eta(f(\cdot + t)) = \sum_{k=0}^{n-1} \int_{G} \varphi(s, |f^{(k)}(s+t)|) \, ds$$

$$\leq \sum_{k=0}^{n-1} \int_{G} \varphi(s, c |f^{(k)}(s)|) \, ds + n \int_{G} \xi(t, s) \, ds$$

$$\leq \eta(cf) + h_{0},$$

where $h_0 = n \sup_{t \in G} \int_G \xi(t, s) ds$. Consequently we have, for every $0 < \lambda < 1$ and a > 0,

$$\begin{split} \rho(aTf) &\leq M\rho \left[\int_{G} p(t) \ aDM\psi(t, \|D_{n}f(\cdot + t)\|_{\mathbb{R}^{n}}) \ dt \right] \\ &\leq M \int_{G} p(t) \ \rho(aDM\psi(t, \|D_{n}f(\cdot + t)\|_{\mathbb{R}^{n}})) \ dt \end{split}$$

$$\begin{split} &\leqslant M \int_{G} p(t) \, \bar{\eta} (\lambda D_{n} f(\,\cdot\,+\,t)) \, dt \\ &\leqslant M \eta (\lambda c f) + M h_{0} < + \infty, \end{split}$$

that is (5); as a direct consequence, $Tf \in L^0_\rho(G)$.

6. APPROXIMATION THEOREMS IN $W_{n-1}^{\varphi}(G)$

We are going now to formulate the approximation theorem (Theorem 1) in the special case of generalized Orlicz–Sobolev spaces $W_{n-1}^{\varphi}(G)$, taking the modular η defined by formula (2) and defining the linear continuous functional $\mathscr{A}: \mathbb{R}^n \to \mathbb{R}$ by $\mathscr{A}(u_0, ..., u_{n-1}) = u_0$. If φ is weakly τ -bounded with a function ξ , then η is τ -subbounded with a constant $h_0 = n \sup_{t \in G} \int_G \xi(t, s) ds$ (see the proof of Theorem 3).

Let us also remark that $K(t, u_0, u_1, ..., u_{n-1}) = 0$ if $u_0 = \mathcal{A}u = 0$; that is, $K(t, 0, u_1, ..., u_{n-1}) = 0$, for arbitrary $t \in G$ and $u_1, ..., u_{n-1} \in \mathbb{R}$. Thus Theorem 1 yields the following

THEOREM 4. Let G be defined as in Section 5. Let ρ be a \mathcal{J} -convex, quasimonotone (with constant $M \ge 1$) modular on $L^0(G)$. Let η be the modular defined by (2), generated by a weakly τ -bounded, φ -function φ , and let $\overline{\eta}$ be the extension of the modular η as defined in Section 4. Let $\{\rho, \psi, \overline{\eta}\}$ be a properly directed triple, and let $K: G \times \mathbb{R}^n \to \mathbb{R}$ be an (L, ψ) -Lipschitz kernel function, where $K(t, 0, u_1, ..., u_{n-1}) = 0$, for any $t \in G$ and $u_1, ..., u_{n-1} \in \mathbb{R}$. Then for any $f \in Dom T \cap W_{n-1}^{\varphi}, U \in \mathcal{U}, \lambda \in]0, 1[, and a \in]0, C_{\lambda}(2DM)^{-1}[$ there holds the inequality

where $D = \int_{G} L(t) dt$, $p(t) = L(t) D^{-1}$,

$$r_0 = \sup_{u_0 \neq 0} \left| \frac{1}{u_0} \int_G K(t, u_0, ..., u_{n-1}) dt - 1 \right|,$$

and h_0 is the constant of the τ -subboundedness of η .

Now we are going to investigate the η -modulus of continuity ω_{η} for the modular defined in (2). As \mathscr{U} we take the family of intervals $U_{\delta} = [-\delta, \delta]$, where $\delta > 0$. Then we have for an arbitrary $\lambda > 0$ and $f \in W_{\eta-1}^{\varphi}(G)$,

$$\omega_{\eta}(\lambda f, U_{\delta}) = \sup_{|t| \leq \delta} \left\{ \sum_{k=0}^{n-2} \int_{G} \varphi(s, \lambda | f^{(k)}(t+s) - f^{(k)}(s) |) ds + \int_{G} \varphi(s, \lambda | f^{(n-1)}(t+s) - f^{(n-1)}(s) |) ds \right\}$$
$$\leq \sum_{k=0}^{n-2} \int_{G} \varphi(s, \lambda \omega(f^{(k)}, \delta)) ds + \omega_{\eta}(\lambda f^{(n-1)}, \delta), \tag{6}$$

where $\omega(g, \delta) = \sup_{|t| \le \delta} \sup_{s \in G} |g(t+s) - g(s)|$ and

$$\eta_1(g) = \int_G \varphi(t, |g(t)|) dt.$$

We recall that a φ -function φ is called *locally integrable* on G if $\varphi(\cdot, u) \in L^1(C)$ for every compact set $C \subset G$, for any $u \in \mathbb{R}_0^+$. Under the notations of Section 5 there holds the following:

PROPOSITION 2. Let φ be a τ -bounded, locally integrable, φ -function depending on a parameter. Then for every function $f \in W^{\varphi}_{n-1}(G)$ there exists a number $\lambda > 0$ such that:

$$\lim_{\delta \to 0} \omega_{\eta}(\lambda f, U_{\delta}) = 0.$$

Proof. Suppose that $G = \mathbb{R}$ has f has a compact support C. Since $f^{(k)} \in C(G)$, for k = 0, 1, ..., n-2, so $\omega(f^{(k)}, \delta) \to 0$ as $\delta \to 0$ for k = 1, ..., n-2. Let us take $\delta_0 > 0$ so small that $\omega(f^{(k)}, \delta_0) < 1$. Let $D \subset G$ be a compact set such that $[-\delta_0, \delta_0] + C \subset D$. So $f^{(k)}(s+t) - f^{(k)}(s) = 0$ for $s \notin D$, for every $t \in [-\delta_0, \delta_0]$. Thus for the above indices k, we have for $0 < \delta < \delta_0$

$$\sum_{k=0}^{n-2} \int_{G} \varphi(s, \lambda \omega(f^{(k)}, \delta)) \, ds \leq \sum_{k=0}^{n-2} \omega(f^{(k)}, \delta) \int_{D} \varphi(s, \lambda) \, ds \to 0$$

as $\delta \to 0$, by the local integrability of φ , for every $\lambda > 0$. Applying the inequality (6) it is enough to prove that $\omega_{\eta}(\lambda f, \delta) \to 0$ as $\delta \to 0$ for $g \in L^{\varphi}(G)$ and sufficiently small $\lambda > 0$. Here $L^{\varphi}(G)$ is the Musielak–Orlicz space generated by the function φ . Now, since $\int_{D} \varphi(s, u) \, ds < +\infty$ for all $u \ge 0$, the modular η_1 is monotone, absolutely finite, and absolutely continuous modular on $L^{\varphi}(G)$ such that $\eta_1(f(t+\cdot)) \le \eta_1(cf) + h(t)$ with some $c \ge 1$, and $h(t) \to 0$ as $t \to 0$, and $f \in L^0(G)$ (see [3]). By [3, Theorem 2], we obtain $\omega_{\eta_1}(\lambda g, \delta) \to 0$ as $\delta \to 0$ for sufficiently small $\lambda > 0$.

Remark 2. We remark that the previous theorem can be proved also when G = [a, b] and the involved functions are extended by periodicity outside the interval [a, b]. Moreover, we point out that if in Theorem 4 the assumptions of Theorem 2 are satisfied, then one may replace the requirement $f \in \text{Dom } T \cap W_{n-1}^{\varphi}$ with simply $f \in W_{n-1}^{\varphi}$.

Theorem 4 and Proposition 2 may be applied in order to obtain a convergence theorem. Arguing as, for example, in [2], we introduce an abstract nonempty set W of indices w filtered by a family \mathcal{W} of its subsets. In place of one kernel function K we take a family $\mathbb{K} = (K_w)_{w \in W}$ of kernel functions, which we call a *kernel*. We assume that $K_w(t, u_0, u_1, ..., u_{n-1}) = 0$ whenever $u_0 = 0$, for all $w \in W$. Let $\mathbb{L} = (L_w)_{w \in W}$ be a family of nonnegative functions $L_w \in L^1(G)$ and let $D_w = \int_G p_w(t) dt$, $p_w(t) = L_w(t) D_w^{-1}$. The kernel \mathbb{K} is said to be (\mathbb{L}, ψ) -Lipschitz if the kernel functions K_w are (L_w, ψ) -Lipschitz, for all $w \in W$. Let $D = \sup_{w \in W} D_w < +\infty$. We say that the kernel \mathbb{K} is strongly singular if

$$\int_{G\setminus U_{\delta}} p_{w}(t) dt \xrightarrow{\mathscr{W}} 0$$

and

$$r_0(w) = \sup_{u_0 \neq 0} \left| \frac{1}{u} \int_G K_w(t, u_0, ..., u_{n-1}) dt - 1 \right| \xrightarrow{\mathscr{W}} 0,$$

where $\xrightarrow{\mathscr{W}}$ represents the convergence with respect to the filter \mathscr{W} . Denote now by $\mathbf{T} = (T_w)$ the corresponding family of operators

$$(T_w f)(s) = \int_G K_w(t, D_n f(s+t)) dt$$

for $w \in \mathcal{W}$ and $f \in \text{Dom } \mathbf{T} = \bigcap_{w \in W} \text{Dom } T_w$. Then the following theorem may be derived, applying Theorem 4 and Proposition 2, in an analogous manner as in [2, Theorem 2]:

THEOREM 5. Let G be as in Section 5. Let ρ be a \mathscr{J} -convex, quasimonotone modular on $L^0(G)$. Let φ be a τ -bounded, locally integrable φ -function depending on a parameter, let η be the modular defined on $W^{\varphi}_{n-1}(G)$ by the formula (2), and let us suppose that the triple $\{\rho, \psi, \overline{\eta}\}$ is properly directed. Let $\mathbb{K} = (K_w)_{w \in W}$ be a strongly singular, (\mathbb{L}, ψ) -Lipschitz kernel such that $K(t, 0, u_1, ..., u_{n-1}) = 0$ for $t \in G$ and $u_1, ..., u_{n-1} \in \mathbb{R}$. Let $f \in L^0_\rho(G) \cap W^{\varphi}_{n-1}(G) \cap$ Dom T. Then

$$\rho[a(T_w f - f)] \xrightarrow{\mathscr{W}} 0$$

for sufficiently small a > 0.

Remarks. 1. Let us remark that if additionally there are satisfied the assumptions of Theorem 2 then one may replace the requirement $f \in L^0_{\rho}(G) \cap W^{\varphi}_{n-1}(G) \cap \text{Dom } T$ simply by $f \in L^0_{\rho}(G) \cap W^{\varphi}_{n-1}(G)$.

2. Theorem 5 remains true if we replace the strong singularity of the kernel by the *singularity*, i.e.,

$$r_{k}(w) = \sup_{1/k \leq |u_{0}| \leq k} \left| \frac{1}{u_{0}} \int_{G} K_{w}(t, u_{0}, ..., u_{n-1}) dt - 1 \right| \xrightarrow{\mathscr{W}} 0$$

for k = 1, 2, ... In this case we have to assume that the modular ρ is finite and absolutely continuous (see also [2]).

3. The theory developed in this paper can be easily generalized by relaxing the \mathscr{J} -convexity of $\tilde{\rho}$. Indeed we can assume that $\tilde{\rho}$ is *M*-quasiconvex. This concept was introduced in [4]; we remark that the related concept for functions was given in [6, 7].

REFERENCES

- C. Bardaro and G. Vinti, Modular approximation by nonlinear integral operators on locally compact groups, *Comm. Math.* 35 (1995), 25–47.
- C. Bardaro, J. Musielak, and G. Vinti, Approximation by nonlinear integral operators in some modular function spaces, *Ann. Polonici Math.* 63 (1996), 173–182.
- C. Bardaro, J. Musielak, and G. Vinti, On the definition and properties of a general modulus of continuity, *Math. Japonica* 43 (1996), 445–450.
- C. Bardaro, J. Musielak, and G. Vinti, Some modular inequalities related to Fubini– Tonelli theorem, Proc. A. Razmadze Math. Inst. Georgia 118 (1998), 3–19.
- G. B. Folland, "Real Analysis: Modern Techniques and Their Applications," Wiley, New York, 1984.
- A. Gogatishvili and V. Kokilashvili, Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces, *Proc. Georgian Acad. Sci. Math.* 6 (1993), 617–645.
- I. Mantellini and G. Vinti, Modular estimates for nonlinear integral operators and applications in fractional calculus, *Numer. Functional Anal. Optim.* 17 (1996), 143–165.
- J. Musielak, Nonlinear approximation in some modular function spaces I, *Math. Japonica* 38 (1993), 83–90.
- J. Musielak, Orlicz spaces and modular spaces, *in* "Lecture Notes in Math.," Springer-Verlag, Berlin/New York, 1983.
- J. Musielak, On nonlinear integral operators, Atti Sem. Mat. Fis. Univ. Modena 57 (1999), 247–254.
- A. Musielak and J. Musielak, On nonlinear integral operators in function spaces, *Math. Japonica* 48 (1998), 257–266.